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Figure 1. Our proposed algorithm takes a variably-unstable lighting sequence [Top] and relights the foreground and back-
ground scenes [Bottom] based on relighting weights. We attempt to approximate the illumination of discrete regions in the
images based on hue and relight regions given their deviation from the global average illumination. For consistently-delectable
objects in scene, we employ local relighting that samples a discrete uniform set of HSL values from the object’s detected
bounding box and relights each box based on the average HSL values.

Abstract
We present a novel light-stabilization algorithm that takes into
account object BRDFs to relight sequences of frames subjected
to variable lighting conditions. By assuming no objects in scene
share the same BRDF, we calculate illumination changes in
objects independently and apply a calculated relighting mask
to a sequence of video frames to stabilize changes in illumi-
nation. OpenCV is used to calculate object bounding boxes to
perform local lighting re-weighting. Pixels outside local objects
are considered a part of the global lighting scale and are relight
using k-means clustering to separate hues in HSL space and
perform relighting independently on separate clusters. Global
relighting does not respect BRDF properties and assumes all
objects in the same hue group share a uniform BRDF. We test
our algorithm on manually-relit and real-life variable light-
ing scenes and discover that our algorithm is translation and
scale-invariant but not rotation-invariant.

1 Introduction
Many sources of error can harm video capturing and cause
abrupt, unwanted changes in scene. One such source is vari-
able lighting which can lead to objects changing luminosity
mid-scene. Environmental factors such as sunlight are el-
ements that cause these changes that are out of reach of
videographers. Often when filming indoors near windows,
videographers have to take precautions and reduce their de-
pendence on variable lighting by using other, more brighter

ambient lights in the scene that they have control over such
that abrupt changes in outdoor lighting will have a minimal
effect on the illumination of objects in scene. Some artifacts
of outdoor lighting are a lack of light during night shoots,
overexposure in certain areas (also known as "hot spots"),
harsh shadows from sunlight hitting only parts of a subject,
and lens flare [3].

Using controlled lighting indoors is not always a feasible
alternative. It often negatively impacts the aesthetics of a
photo and only works at short ranges, due to the falloff
of light as a function of distance [1]. Due to these issues,
natural lighting is required for certain scenes, and can often
create more lifelike environments than with indoor lighting,
thus making it difficult for videographers to lessen their
dependence on outdoor lighting.

In such scenarioswhere variable lighting is heavily present,
post-processing lighting-stabilization techniques are used
to reduce abrupt changes in lighting during a given scene.
Professional Video Editing softwares like Adobe After Ef-
fects and Final Cut Pro offer videographers with plug-ins
that can directly edit lighting conditions. These techniques
allow videographer to traverse videos frame-by frame, as-
sume some average luminosity value of each frame, and
compare it to the overall average luminosity value among all
frames. Videographers will manually edit the the luminos-
ity of a given frame, adding keyframes when illumination
falls below a certain threshold from the mean. Procedures
such as these act as a global relighting technique, where the
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brightness of the entire scene is raised or lowered equally.
Global relighting make heavy assumptions on the objects in
view when brightening such objects, such as every object
being equally as far from the camera and having the same
BDRF properties. Computation time for these algorithms are
quick, yet objects in scene will not always be lit correctly. By
assuming uniform distance from the camera and constant
BRDFs, more specular surfaces may appear darker and dif-
fuse surfaces may end up brighter, ultimately leading objects
to be lit incorrectly when light-stabilization is used.
A visual representation of these artifacts can be seen in

Figure 2 where two static scenes with varying illumination
are brightened to match in illumination. By using the green
color patch of the image as a control point, the darker image
is brightened until the green color patches match in both
images. This result still leaves the red patch to differ in both
images because the difference in illumination between the
green patches and red patches are not equal, nor do they
respond to variable lighting the same way.
Objects in the real world have varying responses to vari-

able lighting depending on their geometry and exterior ma-
terial composition. Light-stabilization algorithms should at-
tempt to preserve these conditions as much as possible. Do-
ing so requires independently analyzing the change in lumi-
nosity of each object and making the necessary alterations
of illumination for each object.

2 Contributions
In an effort to preserve the varying illumination properties
of objects, we propose a light-stabilization algorithm that
periodically analyzes an object’s illumination and modifies
object illumination independent of other objects in scene.
Object detection gives us the corresponding bounding boxes
we need to sample an object’s luminosity in a given frame.
Given the bounding box of an object for a set of discrete
frames, we can uniformly sample values from the object in
each frame and average these values with other frames to
get an average luminosity of the object over the course of the
video. When the object differs from its average luminosity
by a certain threshold, the algorithm will combine part of the
average luminosity of the object with its current luminosity
to bring it closer to the average.

3 Limitations
Due to the algorithm’s high reliance on object detection and
segmentation, the results of the research depend on howwell
vision algorithms are able to detect objects on scene. Jittery
and imprecise bounding boxes will cause the algorithm to
sample points on the screen that may not be related to the
object at all, thus biasing the object’s average illumination.
Object detection does not give any information on the

orientation of the object either. The way we sample illumi-
nations from the object will stay the same even if the scene

Figure 2. [Top] Original photos under low [Left] and high
[Right] outdoor lighting. [Bottom] Increased low lighting
photo [Left] to match high lighting photo [Right]. Center
compares color patches between top two and bottom two
photos. Brightness is increased in lower photos until green
shades match while a difference between red shades remain.

rotates, thus biasing illumination sampling. Making a more
robust sampling algorithm requires extracting orientation
features from the bounding box that we discuss as a future
work.

4 Related Works
Many algorithms exist for color correction and light stabiliza-
tion that use various hardware and algorithmic techniques
to stabilize pixel quality. A meta review by Xu and Mulligan
[11] tested 10 different state-of-the-art color correction algo-
rithms on consecutive images from video. Each algorithm
was evaluated based on two criteria: the similarity of color
pallets and the structure similarity between the two images.
Algorithms with local color adjustments performed better
overall than those with global shifts, signifying the improved
performance quality of local relighting operations.
HaCohen et. al [12] used a SVM to target core color fea-

tures of a set of images to make a graph of them. The SVM is
user-definable and can be altered to be more or less sensitive
to creating edges between nodes. The algorithm is a useful
approach to visualizing systems of feature linkages in im-
ages and is user-controllable in how well the SVM classifies
features and assigns weights.

With a large quantity of variable lighting objects, it is eas-
ier to detect and transfer colors from their ground truth by
generating a color mapping. Banic and Loncaric [2] plotted
a histogram of color features for images in order to extract
the most important color features. This leads to a substantial
reduction in required variables, since knowing the red pixel
can be used to calculate the blue and green pixels (colors are
normalized to sum to 1). Simmilary Yang et. al [5] extracted
illumination details from an image by looking at grey pixels
in order to re-render the image under white lighting. For
a known set of multiple lighting sources k, they then split
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Figure 3. Global re-illumination [Left] attempts to relight
one pixel (control point) to its corresponding pixel in the
average illuminated case, and use the same relighting across
the entire image. Local re-illumination [Right] uses multiple
control points for each object. Relighting radius for each
object is smaller and more precise in the later case.

the pixels into K groups using K-means clustering based on
their positions and observe illumination properties (such
as color and intensity) separately from these regions. Hus-
sain and Akbari [4] also used color deconstruction to parse
an image into a finite number of discrete lighting regions
though K-means clustering of three pixel values, calculate
the lighting at each point and using a weighted sum to get
the overall lighting conditions of the image. Their approach
also uses local relighting techniques, but creates pre-defined
local regions based on neighboring color groups, not specific
objects.

Color mappings can also be used to create a function that
maps colors between different domains in order to create
novel lighting conditions. Oskam et. al [9] sample color val-
ues between input and transfer images to create a color map-
ping that can recolor a transfer image. By placing colors in
vector spaces, colors not identified in the original image can
be mapped to other colors via a weighting function vectors
pointing to known color regions.

Advancements in hardware have also emerged to provide
color-consistency. Simao and Schneebeli [8] provided an iter-
ative approach that applies a color matrix to pixels to recolor
values. By using a sensor attaches to the camera, the sensor
can grab a hold of colors from previous frames and deter-
mine a canonical color representative for each object (what

Figure 4. Scaled bounding boxes preserves pixel sampling.
Rotation does not preserve sampling.

Figure 5. [Top] Iteratively capturing relighting weights for
discrete sampling points across all frames. [Bottom] using
bilinear interpolation to smoothen weights for points not
originally sampled.

the object would look like under stable lighting conditions)
and transport those pixel values onto future frames.
Much of color correction relies on being able to localize

regions to perform color correction on. Miksik et. al [7] found
that they can use information about previous frames and
segmentations to make accurate and consistent predictions
about current frame segmentations. By warping the current
frame to match with the previous frame, they are able to get
a warped segmentation of objects that, when warp-inverted,
can produce segmentations for the current frame. This works
well for large-scale objects with low motion and long screen
time, but dips in accuracy for small objects with small pixel
area and high motion.

By rendering video as a sequence of images through image-
relighting algorithms, artifacts arise in the temporal domain
between frames. Bonneel et. al [6] created an algorithm
for preserving temporal consistency between frame-edited
segments in video. By using gradient edge analysis, the re-
searchers want to minimize the difference between the arti-
facts and post-processed video frames, where the operation is
a weight of how much the original video frame differed from
the mean of video frames. Lai et. al [10] use deep learning to
minimize local and global temporal flickering to make the
framesmore consistent. Local temporal flickering attempts to
warp frames to match the previous frame to provide smooth-
ing between frames and its neighbors, while global temporal
flickering compares every frame to the first, where the first
frame acts as a stabilization point. This research is useful in
reducing local and global deviations in color by comparing
colors of frames to neighboring frames, as well as to the first
frame of a video as a reference point.

5 Methods
Our approach captures the average illumination for each
identifiable object in scene as well as the overall illumination
of all frames. This setup allows us to perform relighting on
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Algorithm 1 Local Relighting
imдs ← loadImgs(f ileDir )
while n < numIters do
for imд in imдs do
classes,bboxes ← openCV(imдs)
for i in len(classes) do
if illumObj.exists(classes[i]) then
illum ← illumObj.find(classes[i])

else
illum ← illumObj.create(classes[i])

end if
illum.reweight(bboxes[i])

end for
end for
for imд in imдs do
classes,bboxes ← openCV(imдs)
for i in len(classes) do
illum ← illumObj.find(classes[i])
reliдht ← illum.relight(bboxes[i], reliдht)
reliдht ← smoothen(reliдht)
newImд← relightImg(imдs[i], reliдht , strenдth)
imдs[i] ← newImд

end for
end for
n ← n + 1

end while

both the local and global scale by comparing each object with
their average object illumination and the entire scene with
the global average to relight pixels that deviate too much
from their average illumination. This approach differs from
standard relighting techniques by providing multiple illumi-
nation mappings rather than just a single global illumination
as in Figure 3.

5.1 Pre-Weighting Local Illuminations
In order to have a heuristic for object relighting, we need an
estimate for the average object illumination across the scene.
We begin by using OpenCVs pre-trained YOLO v3 model to
detect the classes and bounding boxes of objects among all
frames. For each detected object, we record the object class
and bounding box for average luminosity sampling. In this
paper, we work in HLS space, where we attempt to discover
hue, luminance, and saturation weights that we store as a
relighting mask to relight our image.

The bounding boxes of any given object are not expected
to remain constant, as scenes can zoom in and out, changing
the scale of the object and the area of the frame it inhibits
over time. Even if we were to keep the scene constant, an
artifact of OpenCV is that it can never produce completely
motionless bounding boxes, and as such, our program must
account for changes in the dimensions of a bounding box for
an object. To do so, we specify for each object the number

Algorithm 2 Global Relighting
imдs ← loadImgs(f ileDir )
buckets ← kMeans(imдs[0].hues)
while n < numIters do
дlobals ← createGlobals(buckets)
for imд in imдs and д in дlobals do
g.tryRelight(imд)

end for
for i in len(imдs) do
reliдht ← globalRelightWeight(imдs[i], reliдht)
reliдht ← smoothen(reliдht)
newImд← relightImg(imдs[i], reliдht , strenдth)
imдs[i] ← newImд

end for
n ← n + 1

end while

of horizontal and vertical luminosity samples taken from
each of its bounding boxes. We assume that such a model is
robust for panning and scaling operations as shown in Figure
4 where we consistently target the same relative coordinates
of an object invariant of translation or scaling. Rotation does
not preserve relative sampling and thus is not supported
by our model. As a result of our approach, we assume no
orientation changes occur for any objects.
With each object, we specify a sampling rate across the

horizontal and vertical fields that determines the resolution
of the average-illuminated object. A sampling rate too small
does not provide much illumination information, and a sam-
pling rate too large can be too costly without providing much
of a performance improvement. Upon detecting a new object,
our algorithm assigns the sampling rate of the object to be
the initial bounding box of the object scaled down by a factor
of 10.

5.2 Local Relighting
We present pseudocode of our relighting algorithm in Algo-
rithm 1. Given the average illumination of an object and all
the instances where the object is present across the frames,
we can individually compare the illumination of the cropped
component of the object in each frame to the average illumi-
nation for that object. Since the bounding box [Wi ,Hi ] of the
object for each frame i is not guaranteed to match the dimen-
sions of the average image-illuminated object [Wo ,Ho], we
employ the same sampling technique of uniformly sampling
Wo ×Ho components in frame i ′s bounding box and compar-
ing them to their corresponding index in the average image-
illuminated object (which we refer to as its corresponding
pixel representative). Doing so will provide information on
the illumination difference from the average illumination at
each of theWo × Ho discrete, spatially-uniform regions of
frame i ′s image.
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To relight the image, we allow the user to specify a re-
lighting strength coefficient that signifies how much the
illuminations of each sampled pixel from each frame of an
object is allowed to deviate from their corresponding pixel
representative in the average-lit object. With each sampled
object pixel, we can capture a variance between it and its
pixel representative, and can relight the pixel closer to its
representative as a function of the strength coefficient and
variance. As in Figure 5, we assign to each sample pixel a
relighting weight that signifies how much of its luminance is
to be changed in a given frame. For object pixels not sampled
originally, we use bilinear interpolation over the pixel repre-
sentatives to find the closest pixel value given its location
and determine its relighting value. This provides a smoother
relighting weight for objects where [Wo ,Ho] << [Wi ,Hi ].

5.3 Global Relighting
Not all objects can be discretely identified by openCV, so for
portions of frames that were not given bounding boxes, we
use global relighting similar to Hussain and Akbari to get
their relighting weight [4]. We first want to make a heuris-
tic for dividing the unclaimed pixels for each frame into N
discrete color bins such that we minimize variance between
the color values of any pixels in the bin. We sample the hue
values from the first frame and use k-means clustering to
sort the colors into N hue bins as seen in Figure 7. For the

Figure 6. HSL relighting maps calculated on flower image
set. Gaussian smoothing is used to resolve artifacts that arise
from hard relighting lines.

Figure 7. Hue Segmentation on 10 discrete hue buckets us-
ing k-means clustering for optimal partitioning. Segmenta-
tions do not remain constant across frames, as can be noted
with the change in the surface area of brown.

remaining images, we add the pixels to the corresponding
hue bins. Example pseudo-code can be seen in Algorithm 2.
As new light is introduced into the scene, different color

groups will respond differently to the additional lighting.
For each bin, we calculate the average hue, illumination,
and saturation of pixels retrieved from that frame and the
overall average among all frames and use this as a heuristic
for how much each color bin should be re-lit. Comparing
a bin’s average frame illumination to its overall average
illumination gives us the same variance needed to calculate
how much color re-weighting is needed to bring the average
illumination of the pixels in that bin of a given frame closer
to their bin average. This re-weighting can then be applied
to all pixels in that bin for that particular frame.
Notice that this approach does not respect object BRDFs

as it captures average illuminations across multiple objects
in order to relight a scene. This is the best we can do given
we use global relighting on areas where object locations and
bounding boxes are not made clear.

Once the local relighting mask for each object is combined
with out global relighting mask, we can apply the mask with
some strength coefficient to relight a given frame. Originally,
a sharp relighting mask was used as seen in Figure 6, leading
to really sharp edges and illumination artifacts, particularly
in regions that should have been smoothed out. We applied
a 3x3 Gaussian blur matrix for 250 iterations on each of the 3
HSL relighting maps to reduce relighting artifacts that arose
from sharp edges.

6 Results
We tested our algorithm on various image sets with distinct
foreground and background components, where we intro-
duced known variable lighting to the images and attempted
to correct for the lighting. In one trial we test an image se-
quence with stabilized positions while in another trial we
apply positional and scale-based jitters to test the robustness
of the algorithm to transformations on position and scale.
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Figure 8. [Row 1.] Relighting on stable-transformation frames. [Row 2.] Relighting on position-variant frames. [Row 3.]
Relighting on scale-variant frames. [Row 4.] Relighting on naturally-lit frames.

7 Discussion
Results in Figure 8 show the original and relighted image
sequence. Our algorithm was able to detect and apply illumi-
nation masks to reduce illumination differences in images.
Our algorithm is demonstrated to be position and scale in-
variant.

When initially constructing sampling dimensions for new
local illumination object, we attempted to find optimal sam-
pling dimensions proportional to [win ,hin] which represent
the initial width and height of the bounding box where the
object was first detected. Through multiple trials, we found
that sampling rates of [win/div,hin/div] for div ∈ [1, 10]
produced optimal results. For any value of div larger than

10, we would have too high pixels per sample resulting in
very uneven results from too little sampling. By keeping div
low, we ensure that we have enough samples to accurately
capture the illumination of the object in each frame without
missing any details. One case where this approach fails is
when an object is first revealed when from far away before
coming close to the viewer. In this case, we start with small
sampling dimensions from its first appearance that overall
leads to small illumination sampling as the object gets closer
to the viewer. A possible resolve could be to adjust sampling
dimensions over time if the bounding box of an object ex-
ceeds more than k times its sampling dimensions for some
fixed k .
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Figure 9.Global colors are broken down into 18 independent
hue ranges. Average hue, illumination, and saturation are
calculated for each color group. The top color in each patch
represents the initial HSL colors of the first image in the
flower set. The middle color represents the relighted image
colors. The lower color is the global average of that color.
Each color is labeled by its hue range. After relighting, each
color group is lit closer towards its canonical representative.

True constant illumination could not be achieved, as there
is still some illumination difference present between the first
and last frames of each sequence. This is because changes
in illumination can also lead to changes in hues, and as
such leads to differences in hue segmentations across images
as visualized in Figure 7. That is, when a bright pixel of a
certain hue class leaves to another hue class, the class it
left receives a lower illumination and a higher illumination
mask, while the class that now features the new pixel has a
higher illumination and a lower illumination mask. Solving
such a problem would require adjusting hue ranges across
images so that images with overall brighter illuminations
share similar hue segmentations as those with lower overall
illuminations.
We compare the HSL output between initial and re-lit

frames in Figure 9. From this we can see that the hue divisions
of each frame steadily reach the average hue values after
each iteration. Since we use a relighting strength of a ones-
vector in Algorithm 2, then our results converge on the first
iteration, where subsequent iterations provide no changes
to our HSL values.

8 Future Work
Our current algorithm does not work with rotated objects
in scene. Given a known orientation feature, we could ad-
just our sampling to make the algorithm rotation invariant.
An approximation algorithm to extract orientation features
could be to calculate the average area of the bounding boxes

Figure 10. [Top] Original image sequence. [Bottom] Re-lit
image sequence. By using bounding boxes, the algorithm
samples from the background carpet and uses that as a
heuristic to relight nearby regions of the table, making them
brighter than they should be.

across all frames of an object. If the area of an object’s bound-
ing box in a given frame is noticeably larger than the average,
then we periodically rotate the frame in both directions and
rerun the frame in the object detection algorithm until the
bounding box area approaches the average area. While such
an algorithmwould ensure the bounding boxes in each frame
are roughly the same size, this does not work in scenes that
zoom and change object size.
Object detection only provides a rough estimate as to

where the object may be located. Since bounding boxes are
rectangular and very few objects in real life exhibit rect-
angular faces, our algorithm ends up sampling luminosity
from the background and neighboring objects contained in
the bounding box as seen in Figure 10. To reduce extrane-
ous luminosity samplings, an extension of our algorithm
could be to use object segmentation that constrains our lu-
minosity sampling and re-weighting to the object itself. By
using a segmentation, our algorithm would rely even more
on the segmentation detecting algorithm, since incorrect
meshes will force our algorithm to sample more from the
backgrounds and nearby objects while less from the object
we may be interested in.

9 Conclusion
We presented a novel relighting algorithm that individually
relights foreground objects detectable by OpenCV in order
to respect object BRDF properties. Not all objects can be
re-lit independently, as our algorithm is limited by OpenCVs
ability to detect objects in scene. With better object detection
we can break our scene more consistently into discrete light-
ing regions that can more optimally relight the scene on an
object-by-object basis. Ideally, we would want to maximize
object re-illumination and minimize global re-illumination
in order to preserve as much of the scenes various BRDFs as
possible.
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