
Frequency-Based Texture Caching
Oscar Dadfar

Department of Computer Science
Carnegie Mellon University
odadfar@andrew.cmu.edu

Andrew Yang
Department of Computer Science

Carnegie Mellon University
atyang@andrew.cmu.edu

GitHub Repo: https://github.com/cardadfar/740-project

Abstract—Most modern-day real-time rasterization pipelines
are memory-bound due to high-latency texture lookups in the
fragment shading stage of the rasterization pipeline. While there
exists a dedicated multi-level hardware cache for textures, the
overall latency for the rasterization is bottlenecked from cache
misses that result in searching main memory for the few pixel
values corresponding to a large texture image. Research has
been done on being able to predict future memory accesses
from past access patterns to help with cache hit rates, but
during rasterization we know all the textures referenced by each
primitive, and thus the total number of accesses per texture
over the scene’s rasterization lifetime. This data can be used
to help predict how likely the same texture will be accessed
in the near future, which is essential in determining whether
to keep certain texture data in the cache. We propose a new
cache eviction policy that combines a baseline LRU ranking with
texture access frequency to compute an eviction score that evicts
textures from the cache that have not been recently used and have
a low probability of being accessed in the future. We evaluate our
results for multiple cache configurations across different scenes
with varying primitive and texture quantities and find that our
algorithm does increasingly better than pure LRU for higher
cache associativities.

I. INTRODUCTION

Fast rasterization techniques are necessary to support the
real-time rendering required by fast-paced video, AR, and
game graphics. A major bottleneck in the rasterization pipeline
is texture reads, comprising more than a third of overall
pipeline latency. Texture reads primarily happen in the frag-
ment shading stage where screen-space coordinates are con-
verted to texture coordinates in order to sample texture colors
and populate a pixel output buffer.

In fragment shading, more time is spent on reading texture
values than on executing instructions. Dedicated texture cache
hardware and texture compression have been proposed, but
the biggest speedup to the pipeline comes from cache-eviction
policies that maximize low-latency texture reads. Storing entire
images in a cache is infeasible given they are orders of
magnitude bigger than L1 and even L2 caches. Rather, we
can partition textures into smaller blocks to make them cache-
friendly and promote spatial locality.

Most caches use temporal-based eviction such as LRU
or attempt to learn an optimal policy from cache access
patterns. Knowing ahead of time when a program needs data
significantly helps in deciding what to evict in case of a
conflict miss. While general programs tend to be unaware

of access patterns prior to run time, rasterization is a bit
different. When loading a scene, rasterizers know the specific
vertex coordinates, triangulated mesh, and texture references
corresponding to each primitive. That is, we know on-demand
how frequently each texture will be accessed based on how
many primitives reference it.

We introduce a new eviction policy that scores cached
texture blocks using a combination of texture access frequency
(which we can pre-compute) and LRU to increase hit rates
during rasterization. We retrieve a mapping of texture ID to
reference frequency while parsing the initial scene file and can
then use these values in the texture cache to assign eviction
scores, finding that this new eviction policy performs better
than pure LRU as we increase cache associativity.

II. RELATED WORKS

Texture caching has been an important field of study in
the rasterization pipeline given its high temporal and energy
consumption compared to other stages of the pipeline [1]. One
of the first suggestions for dedicated texture hardware focused
on the representations of textures in memory and the impact
of spatial locality [2]. Many cache access patterns such as
spatial locality have their own variant in the graphics domain,
such as texture-blocking. In fragment shading, anti-aliasing
techniques such as bilinear and anisotropic interpolation utilize
a neighborhood of pixels averaged together to return a color
value. It is very common for texturing to return 2×2 samples
of adjacent pixels to average together to sample a color, so
a simple row-major blocking strategy would fail in this case.
Texture blocking solves this problem by blocking each group
of N×N pixels into a cache line to improve spatial locality of
the block-like access patterns of texturing which we use when
building our own texture cache simulator [3].The same spatial
locality can also be used for texture prefetching, where nearby
textures can be sent to a FIFO queue to prefetch nearby pixels
based on current pixel access patterns [4].

Large texture blocks can also be compressed down into
smaller blocks when being read into the cache [5]. Direct3D
supports multiple variants of block compression that reduce
the memory footprint per block by reducing precision or in-
terpolating via nearby colors [6]. Such compression strategies
were motivated by the encoder-decoder dynamic commonly
used in video-compression algorithms such as H.264 [7].

With the emergence of multicore architectures, rasterization
was quick to adopt parallel texture caching with a shared L2

Fig. 1. Texture access plots for each scene. x-axis is the timestep in the program the texture is accessed and y-access is the textureID accessed. Long lines
in the plot demonstrate the lifetime a texture is accessed for, and short lines show the brief period a texture is used. sort-by-texture orders all texture accesses
by ID, sort-by-writeback sorts all texture accesses by the screenspace writeback coordinate, multicore sort-by-writeback is the same as sort-by-writeback but
in the 8 thread (shared cache) case, and fragmented multicore sort-by-writeback fragments textures into more fine, grain textures.

texture cache [8]. Developing texture caching techniques for
parallel systems is increasingly difficult since multiple requests
for different texture accesses are interleaved, harming spatial
locality. Texture requests can be queued and serviced peri-
odically for nearby or overlapping requests using a requests
queue in order to reduce the amount of memory reads [4]. We
look into how our proposed eviction algorithm performs for
shared/parallel caching domain.

III. APPROACH

We integrate texture-access frequency into our cache to
design a cache-eviction policy to help better predict how often
a texture block will be re-referenced in the future. We break
our pipeline into two sections, rasterization and texture cache
simulator, and we describe how the two components interface
with one another. We evaluate our algorithm on several scenes
with varying primitive and texture counts seen in Fig. 2.

A. Rasterization Pipeline

Our rasterization pipeline follows the standard graphics-
library pipeline [9] built from a tiled-based renderer [10],
thought we will focus on the high-latency fragment shading

stage. Upon loading a scene, we obtain a vector of every
primitive (triangle) as well as a reference to what texture
the primitive is to be shaded with. We can perform our pre-
computation step by iterating over all primitives and counting
the references to each texture. While this may add some
additional overhead to the rasterization setup stage, we can
delegate this process to the application that created the scene,
saving the texture reference counts within the scene file. The
resulting texture frequency metadata is stored as a map from
texture ID to frequency count and sent over to the texture
cache simulator with other initialization parameters.

Most rasterization pipelines require support for mipmap
level rendering [11]. These mipmap textures store downsam-
pled representations of these texture as their own texture,
which helps counter aliasing artifacts for zoomed out/high-
frequency scenes by sampling textures from higher-level
mipmaps. To alleviate complications for various level refer-
ences of the same texture, our program makes the distinction of
referencing each mipmap level as its own independent texture.
We otherwise leave the texture IDs unchanged.

Fig. 2. Scenes rasterized with different primitives/texture counts.

1) Trace Generation: We generate texture access traces for
our cache simulator via print statements. Our fragment shader
iterates through each primitive and processes fragments in 2x2
pixel batches using SIMD intrinsics. For each fragment, we
compute the texture lookup location and retrieve the corre-
sponding texture pixels. Upon lookup, we print the texture
ID, texture width/height, and texture (x,y) coordinates for our
trace.

Different sampling methods can be used to resolve aliasing
artifacts from incorrect or low precision sampling, such as
jagged lines along high-frequency edges. Higher-order sam-
pling methods yield clearer results but require more texture
lookups from various texture levels. We use anistropic texture
sampling which requires 2 quad texture lookups, where a quad
texture is a 2x2 contiguous region of pixel memory, thus lead-
ing to 8 memory references across 2 textures. Using anistropic
sampling makes out trace file twice as large, but provides us
with more spatial locality since we will be referencing the
same two levels of a texture for each primitive.

2) Texture Access Patterns: A common rasterization tech-
nique is sorting primitives by texture and rasterizing all prim-
itives of the same texture first so that the cache will continue
to contain data from the same texture until all primitives that
need that texture have finished rasterizing, and we move onto
primitives of the next texture. This harms write locality since
we have to jump around the output buffer when rasterizing
primitives sorted on texture ID. Instead, we can improve write
locality by sorting primitives based on screen-space (left-
to-right, top-to-bottom). Reordering textures based on this
premise harms texture read locality since we now need to
support multiple textures rasterizing at or near the same time.
We expect worse LRU miss rates from this approach due to
higher thrashing rates from multiple textures as seen by the
sort-by-writeback access patterns in Fig 1., which motivates
us to integrate a frequency-based policy for eviction to only
keep highly-referenced textures in the cache when excessive
thrashing occurs.

We run our traces for a sequential implementation and
for a multithreaded implementation using 8 threads. Our
multithreaded code rasterizes in a dynamically-scheduled in-
terleaved fashion, where a chunk of rows is partitioned to each
thread, and a thread picks up additional blocks of rows once

they finish their current work. The multithreaded implementa-
tion, as we expect, produces additional thrashing due to each
thread working on their own set of texture rasterizaions as
seen in multicore sort-by-writeback in Fig 1. This beckons
the need for a policy better than LRU in shared cache space
where thrashing is more likely to be found.

Another approach to trace generation was where we did
an additional pre-processing step to fragment textures into
smaller textures before computing texture access frequency.
This approach involved first computing the frequency of
accesses for each texture, and if a texture had a high amount
of accesses, it would be partitioned into 4 (2x2) or 16 (4x4)
equally-sized smaller textures, where the texture frequencies
would be recomputed. This helped give us a better sense in the
traces if there was a specific region in each texture that would
be accessed more than others, and lead to a sparser trace file
as a result. For example, if we had a texture that had a high
frequency of access, but it was the case that only the bottom
right of the texture was accessed heavily, then we should not
rely on caching texture accesses from the top right if they
are infrequent. Fragmenting the texture would help identify
circumstances such as this and assign low frequency accesses
to ares of the texture that are not accessed frequently, thus
allowing them to evict them earlier on. The access patterns
of fragmented multicore sort-by-writeback is shown in Fig 1
where the pattern looks generally the same, but references
are spread out over more textures, giving a finer-grain texture
access frequency.

B. Simulated Texture Cache

Our texture cache is set-associative with n sets and m ways
per set, where n and m are configurable parameters. Integral
to our design are texture blocks, translating texture blocks to
cache tags, computing set indices from cache tags, and our
weighted LRU-frequency eviction policy.

1) Texture Blocks: Texture blocks are rectangular partitions
of w pixels by h pixels in a texture. The first (0-indexed) block
begins at the top left of the texture, i.e. pixel (0, 0), and blocks
are indexed in row-major order. Figure 4 shows an example of
blocks in a texture with block indices. Note that textures with
sizes that are not even multiples of the block size will have
empty regions in the right-most and/or bottom-most blocks.

Fig. 3. Green cells refer to the rasterization pipeline, white cells refer to the
cache pipeline, with wires illustrating how they interface with each other. After
precomputing the texture frequency metadata, we initiate the cache with this
metadata along with other cache specs. When our fragment shader requests
data from the cache, we return the data requested and update the scores of
each cache block based on the LRU ranking and texture frequency of the
block, evicting any block with the lowest score on a cache miss.

2) Tag Translation: The cache translates texture block
accesses into cache tags. It keeps a running sum (initialized
to 0) of the total number of blocks from each unique texture.
Every time the cache encounters a new texture, it first adds the
previous sum to the texture’s block indices to obtain a cache
tag for each block, then it adds the texture’s block count to the
sum. This linear index translation ensures that no two blocks
receive the same cache tag.

3) Hashed Set Index: The index of the set in which a tag
lies is computed as follows. First, we hash the tag (an unsigned
32-bit integer) using the following function [12]:

Listing 1
INTEGER HASH FUNCTION

unsigned i n t hash (unsigned i n t x) {
x = ((x >> 16) ˆ x) * 0 x45d9f3b ;
x = ((x >> 16) ˆ x) * 0 x45d9f3b ;
x = (x >> 16) ˆ x ;
re turn x ;

}

According to Mueller, “each input bit affects each output bit
with about 50% probability” [12]. Finally, we take the hashed
value modulo n to get the set index of the tag. The intent of the
hash is to keep the probability of collision low and relatively
uniform between any pair of unique tags.

4) Remaining Frequency: For each block, we keep an
estimate of how many times it will still be accessed in the
future, which we call remaining frequency. The cache takes as
input total access counts for each texture, and to initialize the
remaining frequency counts, we heuristically divide the total
access counts evenly among each block. Each time a block is
accessed, we decrease its remaining frequency by one.

5) Eviction Policy: We assign each block in a set a score
based on LRU rank r and remaining frequency f . LRU rank
ranges from 0 for least-recently used to m−1 for most-recently
used. We define the score as follows, with adjustable weight
factor w:

Fig. 4. 2× 2 blocks in a 4× 4 texture

score(r, f) = r + w · ln(max(f, 1))

When a new block is accessed, we compute its score
using r = m and compare it against the other blocks in
the appropriate set. If the new block scores higher than the
lowest-scoring block in the set, then it replaces that block.
Setting w = 0 gives a pure LRU policy, and increasing w
gives remaining frequency more influence. We use the natural
logarithm because raw access counts could be extremely large.

With higher weights, our eviction policy is more inclined
to keep texture blocks that will be used more in the future
and evict texture blocks that will be used less. We hope this
feature will synergize with LRU to reduce miss rates

IV. RESULTS

To keep the space of possible configurations within a
reasonable size, we conducted two experiments in sequence:
one to choose set associativity and another to compare our
weighted eviction policy against texture fragmentation.

Our first experiment investigated the effect of associa-
tivity on miss rates for a pure LRU eviction policy. We
fixed (w, h) = (32, 32), the product n · m = 256, and
therefore the total cache size. We chose the associativity
m ∈ {64, 32, 16, 8, 4}, declining the set size apropriately as we
increased the associativity. For each configuration and scene,
we ran the sort-by-writeback cases of single core, multicore,
and fragmented multicore through our cache simulator. Table
I shows our results for this experiment.

Our second experiment took the two best configurations
from the first experiment (associativity m ∈ {64, 32}) and
investigated the effects of our weighted eviction policy and
texture fragmentation on miss rates. We chose the weight
factor w ∈ [0...6], and we ran the same scenes and cases
through our simulator. Table II and Table III show our results
for this experiment. Weight w = 0 is identical to the pure LRU
policy, and increasing the weight increases the significance of
texture frequency in the score. We outline the lowest hit rate
in each column for Table II and Table III and find that our
novel policy is slightly able to beat the pure LRU policy for
certain weights.

TABLE I
32× 32 BLOCK SIZE; PURE LRU

sibenik sponza station warehouse
Single Multi Frag. Single Multi Frag. Single Multi Frag. Single Multi Frag.

Sets Ways Miss% Miss% Miss% Miss% Miss% Miss% Miss% Miss% Miss% Miss% Miss% Miss%
4 64 0.0786 0.4226 0.3168 1.1584 1.2237 1.2241 0.4033 0.9779 1.2423 1.0023 1.0709 1.1013
8 32 0.0789 0.4243 0.3246 1.1648 1.2306 1.2250 0.4184 0.9806 1.2439 0.9955 1.0712 1.1032

16 16 0.0804 0.4443 0.3496 1.1730 1.2433 1.2341 0.4480 0.9832 1.2474 0.9994 1.0797 1.1086
32 8 0.0956 0.5079 0.3930 1.1952 1.2677 1.2526 0.5120 1.1007 1.2574 1.0077 1.1072 1.1274
64 4 0.1712 0.6341 0.5069 1.2141 1.3906 1.3917 0.5875 1.1066 1.3224 1.0282 1.2563 1.2381

TABLE II
4 SETS, 64 WAYS, 32× 32 BLOCK SIZE; WEIGHTED LRU + FREQUENCY

sibenik sponza station warehouse
Freq. Single Multi Frag. Single Multi Frag. Single Multi Frag. Single Multi Frag.

Weight Miss% Miss% Miss% Miss% Miss% Miss% Miss% Miss% Miss% Miss% Miss% Miss%
0.0 0.0786 0.4226 0.3168 1.1584 1.2237 1.2241 0.4033 0.9779 1.2423 1.0023 1.0709 1.1013

1.0 0.0771 0.4149 0.4303 1.1198 1.1946 1.2603 0.3874 0.9643 1.2695 0.9829 1.0607 1.1434

2.0 0.0756 0.4110 0.6427 1.1073 1.1814 1.3346 0.3946 0.9533 1.3103 0.9642 1.0516 1.2355

3.0 0.0744 0.4078 0.7642 1.1116 1.1843 1.4450 0.4234 0.9495 1.3496 0.9562 1.0483 1.3734
4.0 0.0740 0.4083 0.7766 1.1231 1.2171 1.6471 0.4823 0.9558 1.3975 0.9483 1.0586 1.7855
5.0 0.0739 0.4068 0.7768 1.1264 1.3425 2.2094 0.5399 0.9805 1.4600 0.9419 1.0993 4.2838

6.0 0.0735 0.4142 0.7768 1.1278 1.8737 7.8442 0.5701 1.0845 1.5597 0.9556 1.3400 46.309

TABLE III
8 SETS, 32 WAYS, 32× 32 BLOCK SIZE; WEIGHTED LRU + FREQUENCY

sibenik sponza station warehouse
Freq. Single Multi Frag. Single Multi Frag. Single Multi Frag. Single Multi Frag.

Weight Miss% Miss% Miss% Miss% Miss% Miss% Miss% Miss% Miss% Miss% Miss% Miss%
0.0 0.0789 0.4243 0.3246 1.1648 1.2305 1.2250 0.4183 0.9805 1.2439 0.9954 1.0712 1.1032

1.0 0.0767 0.4144 0.6080 1.1140 1.1942 1.3218 0.3973 0.9587 1.3082 0.9659 1.0564 1.2207

2.0 0.0748 0.4098 0.7844 1.1065 1.2267 1.6174 0.4546 0.9586 1.3942 0.9427 1.0609 1.7686

3.0 0.0748 0.4111 0.7848 1.1166 1.7361 7.1641 0.5384 1.0634 1.7267 0.9564 1.2406 35.143
4.0 0.2647 0.6436 0.7918 11.067 18.532 78.493 0.8040 5.4041 4.4791 3.7970 4.5836 68.462
5.0 0.2731 0.6647 0.7918 23.637 30.769 85.922 6.9107 15.874 8.0594 4.2904 4.9034 75.428
6.0 0.2812 0.6768 0.7918 26.315 32.146 87.746 9.6894 17.570 11.349 4.8209 5.4590 78.586

V. DISCUSSION

A. Locality

Our cache exploits spatial locality through the use of texture
blocks. It also benefits from temporal locality in two ways.
First, because the renderer writes pixels in row-major order
but our cache creates two-dimensional texture blocks, blocks
will be reused between adjacent rows. Second, textures of a
single type that appear frequently in the scene tend to appear
close to each other. With our best configurations, the “easiest”
pure LRU cases produced miss rates as low as 0.0786%,
and the “hardest” pure LRU cases produced miss rates of
at most 1.1013%. Our LRU + frequency policy also benefits
from the same low miss rates, demonstrating that most of the
performance gain was already present from locality.

B. Multithreading

Multithreading interleaves texture accesses between cores,
which hurts spatial locality and thrashes our cache. Compared
to the sequential, single core cases, the corresponding mul-
ticore cases always performed worse in Tables I, II and III.
However, the difference in performance was much greater for
the sibenik and station scenes than it was for the sponza and
warehouse scenes. We predict this may be because sibenik and
station have the least amount of primitives, so there isn’t as
much texture data reuse as there is with high-primitive scenes
that make a lot of references to textures.

C. Associativity

The highest associativity (m = 64) gives the lowest miss
rate in all except one case (warehouse, single core) for pure
LRU. We also see that m = 64 gives a lower miss rate

than m = 32 for our weighted eviction policy, suggesting
higher associativity is also better when we consider remaining
frequency. As we demonstrated, increasing set associativity
increases the influence of policies which allow the cache to
make better eviction choices.

D. Fragmentation

Texture fragmentation has a mixed effect on miss rates
for pure LRU, as multicore performs better than fragmented
multicore on each scene except sibenik. Fragmentation by the
renderer may have some anti-synergy with our cache-side
texture blocks, but perhaps with fewer textures (such as for
sibenik), it does provide some benefit.

E. Frequency

For the single core and multicore cases, our weighted
eviction policy with 0 < w ≤ 4 produced slightly lower miss
rates than pure LRU (w = 0). Looking at just the multicore
cases, the best-performing weights were 3.0 for sibenik, 2.0 for
sponza, 3.0 for station, and 3.0 for warehouse. In these cases, it
seems giving some preference towards texture blocks that will
be accessed more often creates a better eviction policy. Since
these scenes contain textures that are accessed over the scenes
lifetime (shown in Fig 1 access plots), we prioritize saving
these high-access textures in the cache since it is very probably
based on their access frequency that they will be re-accessed
in the future. However, giving frequency too much weight
eventually makes the policy worse than pure LRU, as we do
not provide flexibility for other textures with less frequency
accesses even if they are to be used in the near future. Thus,
it is important to balance the concept of locality which LRU
exploits, with access frequency, which our frequency policy
uses.

Combining our frequency-based policy with fragmentation
fails for all weights, with pure LRU working the best in the
fragmentation case. This may be because our frequency-based
policy more greedily throws out other textures when there
are more textures to keep track of. With fragmentation, we
broke textures into smaller pieces and generated more access-
frequency metadata for these smaller texture fragments. Yet as
we see in Table II and III, our miss rates for higher frequency
weights reach miss rates of up to 46.309% and 78.586%,
showing that the same fragments are being held onto even
though they are not needed simply because they have a high
access frequency in the future.

We also see in Table II and III that the optimal set of
frequency weights decrease as we decrease our associative
from m = 64 to m = 32. We extrapolate that running our
policy on lower-associativity caches may show that LRU is
stronger, and for higher associativities our frequency polocy
is stronger. We predict this is because with lower associativity,
evictions are going to happen more often, so we do not want
to hold onto data we may use in the long-term from our
frequency-based policy when all we care about is prioritizing
what gets accessed in the near future, which is governed
by locality (LRU does this really well). As we increase

associativity, we have more room to predict for blocks that
can be in the father future, and so having a frequency-based
policy like ours that maintains more long-term data ends
up performing better than LRU for higher associativities by
merging the locality benefits of LRU with the future-access
predictions of texture access frequency.

VI. FUTURE WORK

The current texture metadata we pass to the cache on
startup only supplies the texture access frequency per texture
at a primitive level. In reality, each primitive will access its
texture several times, and the number of texture accesses will
vary between primitives. Specifically, there is a correlation
between primitive area and the number of texture reads for
that primitive. Future work could explore an eviction policy
that does not rely on the number of primitives that access
a texture, but rather the summed area of the primitives that
access it. It may be the case that a texture with a high
frequency access count may only be so for a large amount
of tiny primitives with a few texture accesses each, but a
texture with low frequency access count may be for a few
very large primitives with thousands of texture accesses each,
in which case we would want to prioritize data from the few
large primitives due to spatial locality. Our test scenes had
roughly the same primitive sizes, but for scenes with high
primitive size variance, this method of using texture frequency
based on the sum of primitive area would be a more reliable
metric of texture access approximation. The only downside is
that this would add extra precomputation and operations per
primitive, but this precomputation could be done on demand
as we add primitives into our scene, making the cost constant
amortized.

VII. CONCLUSION

We present a novel cache eviction algorithm for the texture
cache during rasterization that takes into account the frequency
of texture accesses in order to help predict what textures in the
cache will be needed in the future, and thus kept in the cache.
Our policy mixes LRU rank with frequency ranking that scales
by the log of texture frequency in order to compute a score that
can be used for eviction, where we evict the lowest score. We
compare this score-based policy to pure LRU for associativities
between [4 − 64] and find that we are able to improve using
our novel frequency-based policy for larger associativites.
Future work could look at incorporating primitve area for
a more accurate estimate of the number of texture lookups
per texture during the rasterization pipeline. Nevertheless, our
results show that with a little extra preprocessing, we can
lower high-latency miss rates in the texture cache during the
fragment shading state of the pipeline.

REFERENCES

[1] Jeff Pool, ChungAnselmo Lastra, and Montek Singh. A per-unit
breakdown of the energy consumption in a graphics processing unit.
2010.

[2] Z. S. Hakura and Anoop Gupta. The design and analysis of a cache
architecture for texture mapping. ISCA, 1997.

[3] Jhe-Yu Liou and Chung-Ho Chen. Re-visit blocking texture cache design
for modern gpu. pages 288–289, 2014.

[4] H. Igehy et al. Prefetching in a texture cache architecture. IEEE
International Conference on Computer Design, 1998.

[5] T. Olson et al. Adaptive scalable texture compression. High Performance
Graphics, 2012.

[6] MSDN Developer Reference. Block compression (direct3d 10). 2003.
[7] Gary J. Sullivan Thomas Wiegand. Overview of the h.264/avc video

coding standard. IEEE Transactions on Circuits and Systems for Video
Technology, 2003.

[8] H. Igehy et al. Parallel texture caching. IEEE International Conference
on Computer Design, 2001.

[9] Khrono Wiki. Rendering pipeline overview.
[10] Kayvon Fatahalian. Implementing a parallel sort-middle tiled renderer.

Carnegie Mellon University, 2014.
[11] Lance Williams. Pyramidal parametrics. ACM, 1983.
[12] Thomas Mueller (https://stackoverflow.com/users/382763/thomas

mueller). What integer hash function are good that accepts an integer
hash key? Stack Overflow. URL:https://stackoverflow.com/a/12996028
(version: 2018-08-02).

